REPORT NO. 107 JUNE 1971

CENTER FOR DISEASE CONTROL SURVEILLANCE

CONTENTS. . .

FOR THE MONTH OF FEBRUARY 1971

- I. SUMMARY
- **II. REPORTS OF ISOLATIONS**
- **III. CURRENT INVESTIGATIONS**
- IV. REPORTS FROM STATES
- V. SPECIAL REPORTS
- VI. INTERNATIONAL

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE/PUBLIC HEALTH SERVICE Health Services and Mental Health Administration

)

PREFACE

Summarized in this report is information received from State and City Health Departments, university and hospital laboratories, the National Animal Disease Laboratory (USDA, ARS), Ames, Iowa, and other pertinent sources, domestic and foreign. Much of the information is preliminary. It is intended primarily for the use of those with responsibility for disease control activities. Anyone desiring to quote this report should contact the original investigator for confirmation and interpretation.

Contributions to the Surveillance Report are most welcome. Please address:

-- ----

Center for Disease Control Attn: Salmonellosis Surveillance Activity, Epidemiology Program Atlanta, Georgia 30333

Epidemiology Program
Bacterial Diseases Branch Chief Eugene J. Gangarosa, M.D., Deputy Chief
Enteric Diseases Section
Salmonellosis Surveillance Activity Marshall D. Fox, D.V.M. Andrew Taylor, Jr., M.D.
Statistician
Office of Veterinary Public Health Services

June 1, 1971

TABLE OF CONTENTS

		PAGE
I.	SUMMARY	1
II.	REPORTS OF ISOLATIONS	1
III.	CURRENT INVESTIGATIONS	
	A. <u>Salmonella kottbus</u> Meningitis Associated with Contaminated Breast Milk - Illinois	1
	B. <u>Salmonella</u> <u>cubana</u> Alert!	2
IV.	REPORTS FROM THE STATES	
	None	4
v.	SPECIAL REPORTS	
	A. Recent Articles on Salmonellosis	4
	B. Recalls of Products Contaminated with Salmonellae for period March 3, 1971, to April 14, 1971	5
	C. Status of the Cooperative State-Federal Salmonella Program	6
	D. Announcement of a Change in the Frequency of Salmonella Surveillance Reports	8
VI.	INTERNATIONAL	
	Summary of Salmonella Serotypes Identified in Israel, January - March 1970	9

I. SUMMARY

In February 1971, 1,485 isolations of salmonellae were reported from humans, an average of 372 isolations per week (Tables I, II, and V-A). This number represents a decrease of 133 (26.3 percent) from the weekly average of January 1971 and an increase of 45 (13.8 percent) over the weekly average of February 1970.

Reports of 263 nonhuman isolations of salmonellae were received during February 1971 (Tables II, IV, and V-B).

II. <u>REPORTS</u> OF ISOLATIONS

The ten most frequently reported serotypes during February:

		HUMAN			NONH	UMAN	
	Serotype	Number	Percent	Rank Last Month	Serotype	Number	Percent
1	typhi-murium*	405	27.3	1	typhi-murium*	57	21.7
2	enteritidis	145	9.8	2	reading	33	12.5
3	newport	80	5.4	4	montevideo	12	4.6
4	heidelberg	75	5.1	3	heidelberg	11	4.2
5	infantis	69	4.6	6	manhattan	10	3.8
6	saint-paul	63	4.2	5	cubana	9	3.4
7	blockley	45	3.0	>10	iava	9	3.4
8	java	45	3.0	9	oranienburg	9	3.4
9	thompson	40	2.7	7	infantis	8	3.0
LO	cubana	34	2.3	10	schwarzengrund	7	2.7
	Total	1001	67.4		Total	165	62.7
	TOTAL (all serotypes)	1485			TOTAL (all serotypes)	263	
	*Includes <u>var</u> . <u>copenhagen</u>	22	1.5		*Includes <u>var</u> . <u>copenhagen</u>	1	0.4

III. CURRENT INVESTIGATIONS

A. <u>Salmonella kottbus</u> Meningitis Associated with Contaminated Breast Milk -Illinois

Reported by Charles A. Lang, M.D., Director, Geraldine Simonek, R.N., P.H.N., Home Health Aid Coordinator, DuPage County Health Department; Paul R. Schnurrenberger, D.V.M., Assistant State Epidemiologist, Franklin D. Yoder. M.D., Director, State of Illinois Department of Public Health; and John N. Lewis, M.D., EIS Medical Epidemiologist, Enteric Diseases Section, Center for Disease Control.

On February 23, 1971, a 19-day-old premature infant in a hospital nursery in Elmhurst, Illinois, became ill with meningitis. <u>Salmonella kottbus</u> was isolated from the infant's cerebrospinal fluid as well as from his blood, sputum, and stool specimens. The baby was being breast fed, and four separate cultures of the mother's breast milk were positive for <u>S</u>. <u>kottbus</u>. The mother had no mastitis or gastroenteritis. Follow-up cultures of her milk in late March were negative.

Three other infants in the nursery had asymptomatic enteric infections with <u>S</u>. <u>kottbus</u>, but there is no evidence that these infections preceded that of the infant with meningitis. The mother's milk, therefore, may have either been the cause of her child's infection, or have been contaminated by the nursing infant.

Editor's Comment

This is the first reported isolation of salmonellae from human milk. This organism has been isolated from cows' milk (from both raw milk and milk contaminated after pasteurization) and from milk products (1). Salmonellae have been isolated from the udders of cows in cases of mastitis, and they have been excreted by asymptomatic cows for prolonged periods following artificial infusion into the udders. Contamination of milk has also been documented following contact with infected calves.

B. <u>Salmonella</u> cubana Alert!

Since December 1970, unusually high numbers of <u>Salmonella cubana</u> isolations have been reported to CDC by state health departments throughout the United States (Figure 1). The number of isolations has exceeded that reported in 1966, when a large interstate outbreak caused by <u>S</u>. <u>cubana</u> was traced to contaminated carmine dye (MMWR, Vol. 15, No. 33). No vehicle of infection has yet been identified.

Between December 1, 1970 and March 31, 1971, 180 isolations of <u>S</u>. <u>cubana</u> were reported (Figure 2), compared to 63 isolations for the same period 1 year previously. Males and females were similarly affected; 70 percent of the patients were less than 10 years old. This age and sex distribution is similar to that seen for all salmonella isolations.

The increased number of isolations and their widespread geographic distribution suggest that a nationally distributed product may be involved. Although there have been no recent increases in isolations of <u>S</u>. <u>cubana</u> from non-human sources, this organism has been isolated most commonly from chickens, dried milk products, dried egg yolks, dried yeast, gelatin, and animal feeds.

The Salmonellosis Surveillance Activity would appreciate further epidemiologic information on any <u>S</u>. <u>cubana</u> cases which have been investigated.

^{1.} Marth EH: Salmonellae and salmonellosis associated with milk and milk products. A review. J Dairy Sci 52:283-315, 1969

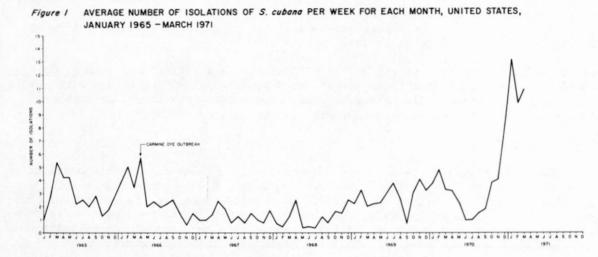
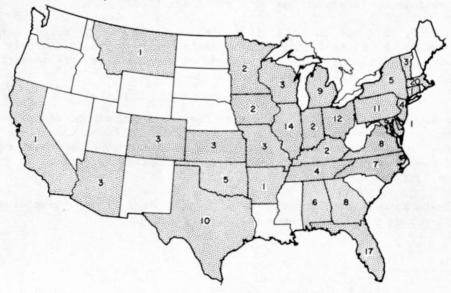



Figure 2 REPORTED ISOLATIONS OF S. cubana FROM HUMAN SOURCES, BY STATE, DECEMBER 1970-MARCH 1971

IV. REPORTS FROM THE STATES

None

V. SPECIAL REPORTS

A. Recent Articles on Salmonellosis

The following articles on salmonellosis of interest to public health workers have been published in recent months.

- Adler JL, Anderson MS, Boring JR III, Nahmias AJ: A protracted hospital-associated outbreak of salmonellosis due to a multiple-antibiotic-resistant strain of <u>Salmonella indiana</u>. J Pediat 77:970, 1970
- 2. Gitter M, Sojka WJ: S. dublin abortion in sheep. Vet Rec 87:775, 1970
- Goepfert JM, Mann ME, Hicks R: One-day fluorescent-antibody procedure for detecting salmonellae in frozen and dried foods. Appl Microbiol 20:977, 1970
- 4. Greenberg B, Kowalski JA, Klowden MJ: Factors affecting the transmission of salmonella by flies: natural resistance to bacterial colonization and bacterial interference. Infection and Immunity 2:722, 1970
- 5. Harvey RWS, Price TH: Sewer and drain swabbing as a means of investigating salmonellosis. J Hyg 68:611, 1970
- Hess GW, Moulthrop JI, Norton HR II: New decontamination efforts and techniques for elimination of salmonella from animal protein rendering plants. J Amer Vet Med Ass 157:1975, 1970
- 7. Members of the Association for the Study of Infectious Disease: Effect of neomycin in non-invasive salmonella infections of the gastrointestinal tract. Lancet 2:1159, 1970
- 8. Milone NA, Watson JA: Thermal inactivation of <u>Salmonella senftenberg</u> 775W in poultry meat. Health Lab Sci 7:199, Oct 1970
- 9. Thomas MEM, Mogford HE: Salmonellosis in general practice. Observations of cases and their households in Enfield. J Hyg 68:663 1970
- Vassilidadis P, Trichopoulos D, Papadakis J, Politi G: Salmonella isolations in abattoirs in Greece. J Hyg 68:601, 1970

B. Recalls of Products contaminated with Salmonellae for Period March 3, 1971, to April 14, 1971 (reported by the U. S. Food and Drug Administration).

From March 3, 1971, to April 14, 1971, two products were recalled by manufacturers and distributors because of salmonella contamination. These products as reported by the U. S. Food and Drug Administration are summarized in the table below.

Week Ending	Name, Label, Form	Manufacturer, Distributor	Lot No.	Depth of Recall	Product Distribution	Serotype	Use
3/24	Sterilized Whipping Cream	(Mfr.) Avoset Food Corp. Guistine, California	3-25	Retail	National	<u>S</u> . <u>senftenberg</u>	Food
4/7	World's Finest Milk Chocolate Bars, World's Finest Imperial Almonds, World's Finest Continental Almonds, Cookettes Flavored Chocolate Cake Toppings	(Mfr.) Cook Chocolate Co. Chicago, Illinois	not coded	Retail	National	<u>S</u> . <u>anatum</u>	Candy

S

C. Status of the Cooperative State-Federal Salmonella Program

Abstracted with permission of the authors from a paper originally presented at the Seventy-fourth Annual Meeting, United States Animal Health Association, Philadelphia, Pennsylvania, October 23, 1970. Authors are Saul T. Wilson, Jr., D.V.M., M.P.H., Chief Staff Veterinarian, John W. Walker, D.V.M., Senior Staff Veterinarian, and Claude J. Pfow, D.V.M., Staff Veterinarian, Poultry Diseases, Animal Health Division, Agricultural Research Service, U. S. Department of Agriculture.

The cooperative State-Federal Salmonella Program is designed to prevent salmonella contamination of feed supplements of animal and marine origin. The accomplishment of this objective is dependent upon a management-operated salmonella control program being developed by each participating rendering and industrial fish plant. The program is being conducted in three phases on an individual plant basis: Phase I "Evaluation," Phase II "Clean-up," and Phase III "Approved."

The evaluation phase of the program has been completed. The objective of this phase was to identify those plants that were producing a finished product in which salmonellae could be detected by specified sampling and laboratory procedures.

Phase II or "Cleanup" is intended to identify the areas where salmonella contamination is occurring in the animal by-products and fishmeal plants. When these areas have been eliminated, when the operational procedures have been brought into adequate compliance with the Sanitation Guidelines, when a self-monitoring program has been implemented, and when the plant has achieved the required number of negative tests of official samples, the plant may be designated as an "Approved" establishment by local, state, and federal officials. After this designation, maintaining "Approved Status" is the program's objective. This is the final goal of the program for the individual plant. Since this is a voluntary program, the owner of each plant is free to establish the target approval date for his own plant. With these goals, a national target date can be established.

The following statistics summarize the results of salmonella testing conducted by the program and the status of the program at the end of Fiscal Year 1970:

Field stations reported the examination of 27,666 samples of which 24,329 were finished product and 3,337 were inline or environmental samples. Of the finished product samples, 3,892 or 16 percent were positive. A comparison of the number of samples tested for program purposes in Fiscal Years 1969 and 1970 is given in Table 1. The increase in 1970 (17 percent to 28 percent) of the percentage of environmental samples that were positive may be attributed to the increased experience of field personnel in locating potential sources of product contamination.

Table 1 - Number of samples tested for salmonella in Fiscal Year 1969 and 1970 by type of samples, number and percent positive.

		cal Year mples Tes			l Year l les Test	
		Pos	itive		Pos	itive
Type of Sample	Total	Number	Percent	Total	Number	Percent
Environmental	7,821	1,353	17.3	3,337	934	28
Finished Product	22,824	3,835	16.8	24, 329	3,892	15.9
TOTAL	30,645			27,666		

The numbers of finished product samples tested and the numbers and percent positive by plant category for Fiscal Years 1969 and 1970 are presented in Table 2.

Table 2 - Test results on finished product samples by type of plant - FY 1969 and FY 1970.

Type of Plant	Numb of Plants		No. of F Prod <u>Samples</u>	uct	Percenta Samples for Salm	Positive
	<u>FY 1969</u>	FY 1970	FY 1969	<u>FY 1970</u>	FY 1969	FY 1970
Protein Blender	15	16	381	433	40	52
Livestock Slaughtering	373	378	9,156	10,390	18	16
Poultry Slaughtering	35	41	730	1,078	17	16
Independent Rendering	362	352	10,407	10,421	16	16
Marine Product	86	77	1,991	1,726	11	8
Feather Meal	9	8_	159	281	3	10
TOTAL	880	872	22,824	24,329	17	16

In Fiscal Year 1970, a total of 3,124 salmonella isolates were serotyped. There were 90 different serotypes represented in these isolates, compared with 93 different serotypes represented in the 3996 isolates serotyped for program purposes in FY 1969. The serotypes found and the ranks they occupied were essentially the same for both years. Table 3 lists the 10 serotypes most frequently isolated in FY 1970.

> Table 3 - The ten salmonella serotypes most frequently isolated from animal and marine byproducts - FY 1970.

	Serotype	Number	Percent
1.	senftenberg	326	10.4
2.	montevideo	296	9.5
3.	eimsbuettel	233	7.4
4.	anatum	216	6.9
5.	oranienburg	148	4.7
6.	binza	135	4.3
7.	bredeney	130	4.2
8.	derby	125	4.0
9.	infantis	98	3.1
	thomasville	98	3.1
	Total	1,805	57.8
	Total (all serotypes)	3,124	

A comparison of the number and percent of plants meeting the Uniform Methods and Rules definition of a negative plant based on their last three tests is given in Table 4.

The increased number in 1970 is due to the increased number of plants that have had at least three or more inspections.

		Year 196 nts	9		Year 197 nts	0
Type of Plant	Total <u>Represented</u>	Nega Number	tive* Percent	Total <u>Represented</u>		tive* Percent
Protein Blender	11	0	0	15	0	0
Livestock Slaughtering	286	60	21	380	101	26
Poultry Slaughtering	22	5	23	38	8	21
Independent Rendering	342	96	28	377	107	28
Feather Meal	4	1	25	8	4	50
Marine Product	63	35	55	81	44	54
Total	728	197	27	899	264	29

Table 4 - Number and percent of plants meeting the salmonella Uniform Methods and Rules definition for a negative plant based upon the last three inspections at close of Fiscal Years 1969 and 1970.

*A negative plant is one that has had three consecutive negative tests of 10 sample units (total 30 negative sample units) of an official sample of finished product. The sample units are collected from the shipping or storage area at an interval of not less than 30 days apart within a 12 month period.

D. Announcement of a Change in the Frequency of Salmonella Surveillance Reports

Beginning in July 1971, the Salmonella Surveillance Report will be distributed quarterly, rather than the present monthly distribution. Salmonella Surveillance Report No. 111 for the month of June 1971 will be the final monthly issue. Report No. 112 will include surveillance data for the months of July, August, and September.

This revised distribution schedule has been favorably received by the Association of State and Territorial Epidemiologists and by readers of the Salmonella Surveillance Report. One of the important decisions leading to this change is the recognition that the more common modes of salmonella transmission, such as mishandled foods, person-toperson spread, and contact with pets, seldom require immediate reporting as an adjunct to control. Quarterly publications will continue to provide timely information on current salmonellosis topics.

As in the past, outbreaks traced to or potentially due to commercial food products and other timely news items will be published weekly in the Morbidity and Mortality Weekly Reports (MMWR). Persons who desire this publication may write to the Editor, Morbidity and Mortality Weekly Report, Center for Disease Control, Atlanta, Georgia 30333.

We wish to thank those readers who sent us their comments on this change.

VI. INTERNATIONAL

Summary of Salmonella Serotypes Identified in Israel, January - March 1970

Reported by Dr. Ch. B. Gerichter, Director, Government Central Laboratories, Ministry of Health, Jerusalem, Israel.

Table 1 - Most Common Salmonella Serotypes Isolated from Man, Israel, January -March 1970

				Rank 4th Quarter	Rank 1st Quarter
	Number	Percent	Rank	1969	1969
S. blockley	86	18.9	1	1	4
S. haifa	86	18.9	1	4	7
S. typhi-murium	73	16.0	2	2	1
S. enteritidis	61	13.4	3	6	3
S. typhi-murium					
var. copenhagen	18	4.0	4	3	2
S. sofia	17	3.7	5	7	5
S. montevideo	16	3.5	6	12	6
S. infantis	14	3.1	7	8	12
S. braenderup	12	2.6	8	9	12
S. newport	12	2.6	8	5	12
S. dublin	6	1.3	9	-	12
S. muenchin	6	1.3	9	12	-
Total 12 serotypes	407	89.4			
Other 21 serotypes	48	10.6			
Total 33 serotypes	455	100.0			

Table 2 - Most Common Salmonella Serotypes isolated from Nonhuman Material, Israel, January - March, 1970

				Rank	Rank
				4th Quarter	1st Quarter
	Number	Percent	Rank	1969	1969
S. kentucky	36	12.7	1	8	10
S. montevideo	31	11.0	2	6	12
S. typhi-murium	31	11.0	2	2	1
S. sofia	23	8.2	3	7	2
S. blockley	20	7.2	4	3	3
S. dublin	20	7.2	4	12	12
S. anatum	19	6.7	5	12	11
S. typhi-murium				2410.00	
var. copenhagen	17	6.0	6	9	5
S. zanzibar	17	6.0	6	12	12
S. infantis	16	5.7	7	4	9
S. enteritidis	7	2.4	8	ż	8
S. haifa	7	2.4	8	12	7
S. concord	6	2.2	9	12	12
S. braenderup	5	1.7	10	12	12
Total 14 serotypes	255	90.4			
Other 27 serotypes	27	9.6			
Total 41 serotypes	282	100.0			

Editor's Comment

<u>Salmonella blockley</u> continues to be one of the most commonly isolated serotypes from human sources in Israel, accounting for 18.9 percent of salmonella isolations during the first 3 months of 1970. In contrast, this serotype accounted for only 2.7 percent of human isolations in the United States during 1970, and was the eighth most frequently found serotype.

The nine most frequently isolated serotypes from humans in Israel during this period were also among the 14 most frequently obtained from nonhuman sources. This again demonstrates the importance of the nonhuman reservoir as a source for human disease.

TABLE I. COMMON SALMONELLAE REPORTED FROM HUMAN SOURCES, FEBRUARY, 1971

	GEOGRAPHIC DIVISION AND REPORTING CENTER																																
SEROTYPE		_		ENGL			+	IDDL	_	-			_	RTH	_	_	_	EST	_	_			_	OF		_	-	-		-		FLA	
enatum bareilly blockley braenderup bredeney	2	NH	VT	2 1	RI	1	NYA	арана 1 5	2	2	PA 2 3 2 2	3 1 4	IND	2	1	1		10	MO	ND	50	NEO	1	1	1		2		1	50	3	2	
chester cholerae-suis v kun cubana derby enteritidis		2		1 4 11	1	1		2	4	1 2 3 5	1 4 22	1	1	4 3 10	1	2	4	1	1				1	2	2 2 6	1	2		2		2 2 9	1 3 1 2	
give heidelberg indiana infantie java				1		1		4 5 1	5 3 4	4 1 2 8	4	7	1	7 7 4	1 4 1	4 1 2	1 2 1						1 5		1 2 1		2		1		1 7 2 2	3 6 1	
javiana litchfield livingstone manhattan miami				2		1		2	1 3	4	5	1		1	3				,1										1		1	4 2 1	
mississippi montevideo muenchen newington newport	2			4 1 2				1 1 7	7	1	2 3 3	1		2 9	1	2	1	1	1				1	1	3 2 1				1 1 1		1	2 2 3	
oranienburg panama paratyphi B reading saint-paul				1		1 1		1 1 1 3			2	5	2	1	2	3	2	1	1						2		1		1		2 1 2	1	
san-diego schwarzengrund senitenberg tennessee thompson	1			1 1 2					2	1 1 2	3			1 1 4	3			1					2		1		2				1 2 1	3	
typhi typhimurium typhimurium v cop weltevreden worthington	2			22	1	13 3	1	18	3	64	1 30 2	13	4	1 18	1 4 2	8	5	1	1 10	3	3		4		12		11	2	8		2 16	3 9	
TOTAL	7	2	-	63	2	25	1	70	54	47	105	54	8	85	28	27	18	6	16	3	3	-	17	4	41	1	25	2	22	-	58	57	1
ALL OTHER*	-	4	1	2	10	-	24	5	1	1	7	-	-	2	2	3	-	-	-	-	-	3	-	1	1	20	1	-	1	2	2	3	
TOTAL	7	6	1	65	12	25	25	75	55	48	112	54	8	87	30	30	18	6	16	3	3	3	17	5	42	21	26	2	23	2	60	60	

Note: NYA - New York, Albany; NYB - Beth Israel Hospital; NYC - New York City. Beth Israel Hospital isboratory is a reference isboratory and this month serotyped a total of110 cultures. * See Table II.

٠

	GEOGRAPHIC DIVISION AND REPORTING CENTER															% OF										
	EAS	T S.	CEN	TRAL	WES	зт з.	CENT	RAL				NUON	TAIN					P	CIFI	c		TOTAL	% OF	CUMU-		SEROTYPE
L	ĸ۲	TEN	ALA	MIS	ARK	LA	OKL	TEX	MON	IDA	WYO	COL	NM	ARI	UTA	NEV	WAS	ORE	CAL	ALK	HAW			TOTAL	TOTAL	
						1		1									2		1		3	22	1.5	39	1.1	anatum
																		- ×	1			3	0.2	10	0.3	bareilly
1						1													4			45	3.0	82	2.3	blockley
																					2	5	0.3	24	0.7	braenderup
								1											1		3	11	0.7	29	0.8	bredeney
ſ							1															4	0.3	19	0.5	chester
						1																2	0.1	2	0.1	cholerae-suis v kun
			1				1	3														34	2.3	86	2.5	cubana
			1			1											1		3		2	33	2.2	77	2.2	derby
		3		1			1	4	1					1			6	5	6		1	145	9.8	304	8.7	enteritidis
ſ																					1	6	0.4	9	0.3	give
		1	2			2	1	1				1		4			3		10			75	5.1	215	6.1	heidelberg
																			2			7	0.5	14	0.4	indiana
		4	1		1	5	1	1						2					9		4	69	4.6	156	4.5	infantis
L		1				2									1			1	10		3	45	3.0	99	2.8	java
								1														7	0.5	43	1.2	javiana
		1																	3			12	0.8	23	0.7	litchfield
								5						1					2		1	9	0.6	9	0.3	livingstone
																			4		1	25	1.7	66	1.9	manhattan
																						1	0.1	7	0.2	miami
																						-	-	3	0.1	mississippi
						3		1						1								23	1.5	50	/1.4	montevideo
								1											4			16	1.1	41	1.2	muenchen
															ŀ							4,	0.3	6	0.2	newington
	2	1	2			1		9				1		2		1	1		14		2	80	5.4	194	5.5	newport
			2			1		1											2			16	1.1	57	1.6	oranienburg
																			3		3	7	0.5	23	0.7	panama
							2	1				1							1			16	1.1	28		paratyphi B
								1									2		1			6	0.4	22		reading
	_		1				_	5	1			1					1	2	9			63	4.2	175	5.0	saint-paul
																	1	1	2			7	0.5	30	0.9	san-diego
																						3	0.2	9	0.3	schwarzengrund
		1					1	1				1							1			16	1.1	33	0.9	senftenberg
			1											3				1	1			8	0.5	11	0.3	tennessee
		1	2			2						3					1		7		1	40	2.7	95	2.7	thompson
	9					2													8			32	2.2	87	2.5	typhi
	2	12	6	2	1	3	1	8				8		3	2		11	6	76		8	383	25.8	897	25.6	typhimurium
					1	2			1	1				2				2				22	1.5	46	1.3	typhimurium v cop
																					6	6	0.4	14	0.4	weltevreden
																				1		4	0.3	7	0.2	worthington
	13	25	19	3	3	27	9	45	3	1	-	16	-	19	3	1	29	18	185	1	41	1312	88.4	3141	89.6	TOTAL
T	1	-	1	6	1	-	1	19	-	-	-	3	25	-	-	-	-	4	9	1	6	173	\backslash	364		ALL OTHER*
ſ	14	25	20	9	4	27	10	64	3	1	-	19	25	19	3	1	29	22	194	2	47	1485	X	3505	X	TOTAL
	_																									

TABLE I - Continued

TABLE II. OTHER SALMONELLAE REPORTED FROM HUMAN SOURCES, FEBRUARY, 1971

SEROTYPE			1		_						RE	PORT	TING	CEN	TER									_
	ALA	ALK	ARK	CAL	COL	DEL	DC	FLA	GA	HAW	ILL	KΥ	MD	MAS	міс	MIS	NEB	NH	NJ	NM	NYA	NYB	NYC	_
albany amager berta cerro chittagong						1		1	2					1										
eastbourne gatow homosassa irumu johannesburg								1																
kaapetad kentucky kottbus krefeld loma-linda					1					1	1	1										1 1		
lomita london madella meleagridia minnesota				1 1											2									
molede oelo paratyphi A poona elegburg	1			2	1			1		4				1								2		
etanley takeony urbana vejle weelaco				1 1 1						1			1						1					
			-																					
OTAL	1	-	-	7	3	1	-	3	2	6	1	1	1	2	2	-	1	-	1	-	-	4	-	
OT TYPED*	1-1	1	1	2	-	-	20	-	-	-	1	-	-	-	-	6	3	4	-	25	24	1	1	
OTAL	1,	1	1	9	3	1	20	3	2	6	2	1	1	2	2	6	3	4	1	25	24	5	1	

TABLE II - Continued

,

					EFC	Rill	IG CI	ENTE	R				CUMULATIVE	ALL
NC	окц	ORE	PA	RI	sc	TEX	νт	VA	WIS			TOTAL	TOTAL	SEROTYPE
			1									2	3	albany
												2	2	amager
												1	3	berta
		- 1										1	2	cetto
			2									2	2	chittagong
						1						1	2	eastbourne
						7						7	7	gatow
												1	1	homosassa
		1						Ι.				1	1	irumu
$ \rightarrow $							L	1				 1	1	johannesburg
												1	5	kaapstad
	1											.3	5	kentucky
			1									4	11	kottbus
				1								1	1	krefeld
												1	1	1oma-1inda
						1						1	3	lomita
			1									1	4	Iondon
												1	1	made lia
												1	5	meleagridis
												2	3	minnesota
								1				1	2	molade
									1			6	7	os 10
									1			1	2	patatyphi A
			1			1						6	15	poona
						1						3	10	siegburg
1												1	1	stanley
	1.1											1	1	taksony
			1									5	12	urbana
1												1	1	vejle
						1						1	1	weslaco
_						-				 				
			-							÷.,				
												· · ·		
		,												
+											-			
1	1	1	7	1	-	12	-	1	2			61	162	TOTAL
-	-	3	-	9.	2	7	1	-	1			112	202	NOT TYPED*
1	1	4	7	10	2	19	1	1	3			173	364	TOTAL

Cumulative Totals include isolations of all serotypes (except those listed in Table |) reported this year.

TABLE III. COMMON SALMONELLAE REPORTED FROM NONHUMAN SOURCES, FEBRUARY, 1971

		DOMESTIC	CANIMALS	AND THE		ONMENT			ANIMAL	FEEDS	
SEROTYPE	CHICKENS	TURKEYS	SWIN E	CATTLE	HORSES	ОТНЕЯ	SUBTOTAL	TANKAGE	VEGETABLE Protein	ОТНЕЯ	SUBTOTAL
enetum bareilly blockley braenderup bredeney	1	2		1			3 1 	3			- - - 3
chester cholerae-suis v kun cubana derby enteritidis		1				1	1 1	6 3			- - 3 -
give heidelberg indiana infantis iava	1	1 5					1 5 1 			1	- - 1
aviana litchfield livingstone manhattan miami	2				1		- - 1 2 -			Ą	
nississippi montevideo muenchen newington newport								2			
oranienburg panama paratyphi B reading saint-paul	1	32				3	3 32 1				
san-diego schwarzengrund senfienberg iennessee thompson	1	4					4 1			4	- - 4
typhi typhimurium typhimurium v cop weltevreden worthington	9	4	4	14	2	4	- 37 1 -				
TOTAL	15	49	4	15	3	9	95	14	-	5	19
ALL OTHER*	-	-	4	2	-	-	6	5	_	1	6
TOTAL	15	49	8	17	3	9	101	19	-	6	25

* See Table IV

99°

TOTAL	920	263	29	76	6	*	8	7	51	26	6	
ALL OTHER*	162	38	5	16	I	1	ı	ı	15	5	1	
TOTAL	758	225	24	60	6	з	8	7	36	21	6	
worthington	19	з		з					з			-
typhimurium v cop weltevreden	1 2			1								
typhimurium	140	56	7	6				1	5	2	4	
typhi	1	ı		I.								
thompson	31	6		5				1	4			
tennessee	19	4 1		۰.	,							
schwarzengrund	و و	۰ ^ر		- 6	-		4	-	1			
san-diego	15	*		1								
saint-paul	39	з	1	1					1			
reading	73	33	1	i								
paratyphi B	,	1		ı						1		
oranienburg	17	9	2	4	1			1	. 2			
newport	14	5		2	1			-		з		
newington	6	1		I								
muenchen	7	-		ı						1		
montevideo	33	12	1	9	2	2	з	2				
mississippi	'	1		1								
miemi	ı	ı		ı								
manhattan	13	10	7	1					1)
livingstone	ω	2		1					1			
javiana litchfield	4	- 1		1 1						1		
java	19	9		ι,						9		~
indiana	43	» I		ן יע					6			
heidelberg	44	11		5					5		1	
give	4	2		I						1		
enteritidis	8	4	1	Ι.						2		
derby	17	6		- 1	,				1		1	
cubana	24	• I	-	<u>،</u> ا	-	-						
chester	ς α	1		I								
bredeney	24	6		2			1		1	1		
braenderup	6	4		4					4			
blockley	24	1,		١.					,			-
anatum	34	- w		. י					-			
				SUE	от	DA	RE	PO	EG			~
	TOTAL		NEOUS	втоти	HER		DMEA	ULTR	GS AN	MENT	BIRDS	
SEROTYPE	CUMU-	TOTAL	MISCEL-	AL.		ΤS	т	Y	D TS	AND	ANIMALS	
					MS	HUMAN DIETARY ITEMS	AN DIET	HUM				

TABLE III - Continued

DOMESTIC ANIMALS AND THEIR ENVIRONMENT ANIMAL FEEDS VEGETABLE PROTEIN SUBTOTAL SUBTOTAL CHICKENS TANKAGE TURKEYS SEROTYPE CATTLE HORSES OTHER OTHER SWINE albany _ berta --1 bornum _ 1 --٦ cerro 3 3 _ cholerae-suis 2 dublin 2 -1 1 eimsbuette1 _ glostrup ----_ 1 1 habana _ kentucky --_ _ orion siegburg _ _ thomasville _ _ _ urbana _ TOTAL 3 2 5 2 -_ _ _ 1 3 NOT TYPED* _ 1 _ 1 3 3 -_ _ --TOTAL 4 2 6 5 1 6 -----

TABLE IV. OTHER SALMONELLAE REPORTED FROM NONHUMAN SOURCES, FEBRUARY, 1971

TABLE IV - Continued

2

						BLE IV -	Continue	ed I	×		T
WILD ANIMALS AND BIRDS	REPTILES AND ENVIRON- MENT	EGGS AND PRODUCTS	POULTRY	RED MEAT	PRODUCTS	EMS EMS EMS	SUBTOTAL	MISCEL- LA- NEOUS	TOTAL	CUMU- LATIVE TOTAL	SEROTYPE
	1	1				0	0 1 - 2 -		1 1 1 2 3	1 1 5 5 7	albany berta bornum cerro cholerae-suis
	1	3					- 3 - - 1	1	2 4 1 2 1	5 14 1 2 6	dublin eimsbuettel glostrup habana kentucky
	2	5			1	-	1 5 	3	1 5 3 2	2 14 11 6	orion siegburg thomasville urbana
			13.		A. 4. 1						
							*				· · · · ·
			X Prin						10 10		
										3	
-	4	12	-	-	1	-	13	4	29	135	TOTAL
-	1	3	-	-	-	-	3	1	9	27	NOT TYPED*
-	5	15	-	-	1	-	16	5	38	162	TOTAL

TABLE V. SALMONELLAE REPORTED BY GROUP IDENTIFICATION ONLY, FEBRUARY, 1971

A. HUMAN SOURCES

							GROU	P							
REPORTING CENTER	в	с	C1	C2	D	E		E4	F	G	1	0	UNK	TOTAL	
ALASKA ARKANSAS CALIFORNIA D.C.	1	2	1	2	3	1		1		1			1 6	1 1 2 20	f
ILLINOIS	1													1	
MISSISSIPPI NEBRASKA NEW HAMPSHIRE NEW MEXICO NEW YORK - A	2 2 1 13		1	2 1 2	1 1 1				2	2	1		1 1 24	6 3 4 25 '24	
NEW YORK - B1 NEW YORK - C OREGON RHODE ISLAND SOUTH CAROLINA	1 5 1	1	1	2						1			1 1	1 1 3 9 2	
TEXAS VERMONȚ WISCONSIN	1		3	1		1							2	7 1 1	
TOTAL	34	4	10	11	6	2		1	2	4	1	-	37	112	

B. NONHUMAN SOURCES

SOURCES							GROU	P						
SOURCES	в	с	C 1	C.2	D	Е		E4	F	G	I	0	UNK	TOTAL
DOMESTIC ANIMALS AND THEIR ENVIRONMENT			1	¥.										1
ANIMAL FEEDS		. 1	1									2		3 1
WILD ANIMALS AND BIRDS											1			- -
REPTILES AND ENVIRONMENT			1											1
HUMAN DIETARY ITEMS													3	3
MISCELLANEOUS													1	1
TOTAL	-	-	3	-	-	-		-	-	-	-	2	4	9